Технология газовой сварки

Инструктаж персонала
Инструктаж персонала
Мы проводим инструктаж персонала для работы на оборудовании
Ремонт на вашем предприятии
Ремонт на вашем предприятии
11 инженеров смогут отремонтировать оборудование прямо на вашем производстве
Гарантия  3 года
Гарантия 3 года
Гарантия на сварочные аппараты — 3 года
Подробнее узнавайте
у специалистов по продажам.
Индивидуальный подбор оборудования
Индивидуальный подбор оборудования
Эксперты «Шторма» проведут индивидуальный подбор оборудования
Задать вопрос
Наши специалисты ответят на любой интересующий вопрос по услуге
Поделиться

ГАЗОВАЯ СВАРКА

Газопламенная обработка металлов - это ряд технологических процессов, связанных с обработкой металлов высокотемпературным га­зовым пламенем. Наиболее широкое применение имеет газовая сварка и резка, которые, несмотря на более низкую производительность и качест­во сварных соединений по сравнению с электрическими способами свар­ки плавлением, продолжают сохранять свое значение при сварке тонко­листовой стали, меди, латуни, чугуна. Преимущества газовой сварки и резки особенно проявляются при ремонтных и монтажных работах ввиду простоты процессов и мобильности оборудования. Кроме сварки и резки газовое пламя используется для наплавки, пайки, металлизации, поверх­ностной закалки, нагрева для последующей сварки другими способами или термической правки и т.д.

Газовая сварка. Газовое пламя чаще всего образуется в результате сгорания (окисления) горючих газов в технически чистом кислороде (чистота не ниже 98,5 %). При горении горючих газов с использованием возду­ха температура газового пламени низ­кая (не выше 2000 °С), так как много теплоты расходуется на нагрев азота, содержащегося в воздухе. В качестве горючих газов используют ацетилен, водород, метан, пропан, пропанобутановую смесь, бензин, осветительный керосин.

Рис1-газовая сварка.jpg

Рис. 1. Распределение температуры по оси нормального газового пламени: 1 - ядро; 2 - восстановительная зона; 3 - факел

Газовое сварочное ацетиленокислородное "нормальное" пламя имеет форму, схематически показанную на рис. 1 [1]. Во внутренней части ядра (зона 1) пламени происходит подогрев газо­вой смеси, поступающей из сопла до температуры воспламенения. В наружной оболочке ядра происходит частичный распад ацетилена. Выделяющиеся частицы углерода раскалены, ярко светятся, четко выделяя очертания оболочки ядра (температура газов в ядре невелика и не превышает 1500 °С).

Зона 2 (восстановительная зона) является наиболее важной частью сварочного пламени (сва­рочной зоной). В ней происходит первая стадия сгорания ацетилена за счет кислорода, поступающего в сопло из баллона, в результате чего здесь развивается максимальная температура.

Содержащиеся в сварочной зоне газы обладают восстановительны­ми свойствами по отношению к оксидам многих металлов, в том числе и к оксидам железа. Поэтому ее можно назвать восстановительной. Содер­жание углерода в металле шва изменяется незначительно. В зоне 3 или факеле пламени протекает догорание газов за счет ки­слорода воздуха, что отражает состав газов в факеле. Содержащиеся в факеле газы и про­дукты их диссоциации окисляют металлы, т.е. эта зона является окисли­тельной. Вид ацетиленокислородного пламени зависит от соотношения кислорода и ацетилена (β) в газовой смеси, подаваемой в горелку.

Рис2-газовая сварка.jpg


Рис. 2 Строение ацетиленокислородного пламени: а - нормальное; б - окислительное; в - науглероживающее

При β = 1,1 ... 1,2 пламя нормальное (рис. 2, а). Ядро пламени резко очерченное, цилиндрической формы с плавным закруглением, ярко светящейся оболочкой, четко выражены все три зоны.

При увеличении этого соотношения (например β = 1,5), т.е.- относительном увеличении содер­жания кислорода (окислительное пламя), форма и строение пламени из­меняются (рис. 2, б). При этом реакции окисления ускоряются, а ядро пламени бледнеет, укорачивается и приобретает коническую заострен­ную форму. В этом случае сварочная зона утрачивает восстановительные свойства и приобретает окислительный характер (содержание углерода в металле шва уменьшается, выжигается).

С уменьшением β (например, β = 0,5), т.е. при увеличении содержа­ния ацетилена в газовой смеси реакции окисления замедляются. Ядро удлиняется и его очертания становятся размытыми (рис. 2, в). Количество свобод­ного углерода увеличивается, частицы его появляются в сварочной зоне. При большом избытке ацетилена частицы углерода появляются и в факе­ле пламени. В этом случае сварочная зона становится науглероживаю­щей, т.е. содержание углерода в металле шва повышается.

Пламя заменителей ацетилена принципиально подобно ацетиленокислородному и имеет три зоны. В отличие от углеводородных газов водородно-кислородное пламя светящегося ядра не имеет (нет светящихся частиц углерода).

Одним из важнейших параметров, определяющих тепловые, а значит и технологические свойства пламени, является его температура. Она раз­лична в различных его участках как по длине вдоль его оси (рис. 1), так и в поперечном сечении. Она зависит от состава газовой смеси и сте­пени чистоты применяемых газов (рис. 3) [1]. Наивысшая температура наблюдается по оси пламени, достигая максимума в сварочной зоне на расстоянии 2 ... 3 мм от конца ядра. Эта сварочная зона является основной для рас­плавления металла. С увеличением β максимальная температура возрас­тает и смещается к мундштуку горелки. Это объясняется увеличением скорости горения смеси при избытке кислорода. При избытке ацетилена (β менее 1) наоборот, максимум температуры удаляется от мундштука и уменьшается по величине.

Рисунок3-газовая сварка.jpg

Рис. 3. Изменение температуры пламени различных видов

Горючие газы-заменители ацетилена, дешевле и недефицитны. Од­нако их теплотворная способность ниже, чем у ацетилена. Максимальные температуры пламени также значительно ниже. Поэтому их используют в ограниченных объемах в технологических процессах, не требующих вы­сокотемпературного пламени (сварка алюминия, магния и их сплавов, свинца, пайка, сварка тонколистовой стали, газовая резка и т.д.). Напри­мер, при использовании пропана и пропанобутановых смесей макси­мальная температура в пламени 2400 ... 2500 °С. Их используют при сварке стали, толщиной до 6 мм, сварке чугуна, некоторых цветных ме­таллов и сплавов, наплавке, газовой резке и т.д.

При использовании водорода максимальная температура в пламени 2100 °С.

Нагрев металла пламенем обусловлен лучистым, и в основном кон­вективным теплообменом между потоком горячих газов и соприкасаю­щейся с ним поверхностью металла. При вертикальном положении от пламени ее растекающийся поток образует на поверхности металла сим­метричное относительно центра пятно нагрева. При наклоне пламени пятно нагрева вытягивается по направлению оси и сужается с боков. Ин­тенсивность нагрева впереди ядра выше, чем позади его.

Ввод тепла в изделие при газовой сварке происходит по большей площади пятна нагрева. Источник тепла менее сконцентрирован, чем при других способах сварки плавлением. В результате обширной площади разогрева основного металла околошовная зона (зона термического влияния) имеет большие размеры, что приводит к образованию повы­шенных деформаций сварных соединений (коробление).

При газовой сварке на металл сварочной ванны активно воздейству­ет газовая фаза всего пламени и особенно сварочной зоны, содержащей, в основном, СО + Н2 и частично пары воды, а также СО2, Н2, О2 и N2 и не­которое количество свободного углерода. Состав газовой фазы определя­ется соотношением кислорода и горючего газа в газовой смеси, темпера­турой пламени и различен в ее различных зонах. От этого зависят метал­лургические взаимодействия газовой фазы с металлом сварочной ванны. Основные реакции при сварке - это окисление и восстановление.

Направление реакции зависит от концентрации кислорода в газовой фазе (окислительное и науглероживающее пламя), температуры взаимо­действия и свойств оксида. При сварке сталей основное взаимодействие газовой фазы происходит с железом, т.е. образование его оксидов или восстановление. Элементы, имеющие большее сродство к кислороду, чем железо (Al, Si, Mn, Cr и т.д.) могут интенсивно окисляться тогда, когда реакций окисления железа не проходит. Они легко окисляются не только в чистом виде, но и находясь в виде легирующих добавок, причем чем их содержание выше, тем окисление интенсивнее. Окисление таких элемен­тов, как Al, Ti, Mg, Si и некоторых других вообще исключить не удается и для уменьшения их угара следует помимо регулирования состава газо­вой смеси использовать флюсы.

Ввиду относительно невысокого защитного и восстановительного действия пламени раскисление металла в сварочной ванне при сварке сталей достигается введением в нее марганца, кремния и других раскислителей через присадочную проволоку. Их действие основано на образо­вании жидкотекучих шлаков, способствующих самофлюсованию свароч­ной ванны. Образующиеся на поверхности сварочной ванны шлаки за­щищают расплавленный металл от кислорода, водорода и азота, газовой среды пламени и подсасываемого воздуха.

Содержащийся в пламени водород может растворяться в расплав­ленном металле сварочной ванны. При кристаллизации металла часть не успевшего выделиться водорода может образовать поры. Азот, попа­дающий в расплавленный металл из воздуха образует в нем нитриды. Структурные превращения в металле шва и околошовной зоне при газо­вой сварке имеют такой же характер, как и при других способах сварки плавлением. Однако вследствие медленного нагрева и охлаж­дения металл шва имеет более крупнокристаллическую структуру с рав­новесными неправильной формы зернами. В нем при сварке сталей с со­держанием 0,15 ... 0,3 углерода при быстром охлаждении может образо­вываться видманштеттовая структура. Чем выше скорость охлаждения металла, тем мельче в нем зерно и тем выше механические свойства ме­талла шва. Поэтому сварку следует производить с максимально возмож­ной скоростью.

Зона термического влияния состоит из тех же характерных участков, как и при дуговой сварке. Однако ее ширина значительно больше (до 30 мм при сварке стали больших толщин) и зависит от режи­ма газовой сварки.

В процессе сварки происходит расплавление основного и присадоч­ного металлов. Регулирование степени их расплавления определяется мощностью горелки, толщиной металла и его теплофизическими свойствами.

Газовой сваркой выполняют сварные соединения различного типа. Металл толщиной до 2 мм соединяют встык без разделки кромок и без зазора или, что лучше, с отбортовкой кромок без присадочного металла.

Металл толщиной 2 ... 5 мм с присадочным металлом сваривают встык без разделки кромок с зазором между кромками. При сварке ме­талла свыше 5 мм используется V- или Х-образная разделка кромок.

Тавровые и нахлесточные соединения допустимы только для метал­ла толщиной до 3 мм. При большой толщине неравномерный разогрев приводит к существенным деформациям, остаточным напряжениям и возможности образования трещин. Свариваемые кромки зачищают от загрязнений на 30 ... 50 мм механическими способами или газовым пла­менем. Перед сваркой детали сварного соединения закрепляются в сборочно-сварочном приспособлении или собираются с помощью коротких швов - прихваток.

Направление движения горелки и наклон ее к поверхности металла оказывает большое влияние на эффективность нагрева металла, произво­дительность сварки и качество шва.

Различают два способа сварки: правый и левый (рис. 4). Внешний вид шва лучше при левом способе сварки, так как сварщик видит процесс образования шва. При толщине металла до 3 мм более производительным является левый способ сварки ввиду предварительного подогрева кро­мок. Однако при большой толщине металла при сварке с разделкой кро­мок угол скоса кромок при правом способе сварки на 10 ... 15° меньше, чем при левом. Угол наклона мундштука также может быть на 10 ... 15° меньше. В результате повышается производительность сварки. Тепловое воздействие пламени на металл зависит от угла наклона оси пламени к поверхности металла (рис. 4).

Рис4-газовая сварка.jpg

Рис. 4. Правый и левый способы газовой сварки

Рис5-газовая сварка.jpg

Рис. 5. Применяемые углы наклона горелки в зависимости от толщины металла

В процессе сварки горелке сообщаются колебательные движения и конец мундштука описывает зигзагообразный путь. Горелку сварщик держит в правой руке. При использовании присадочного металла приса­дочный пруток держится в левой руке. Присадочный пруток располага­ется под углом 45° к поверхности металла.

Оплавляемому концу присадочного прутка сообщают зигзагообраз­ные колебания в направлении, противоположном движению мундштука (рис. 6). Газовая сварка может производиться в нижнем, вертикальном и потолочном положениях. При сварке вертикальных швов "на подъем" процесс удобнее вести левым способом, горизонтальных и потолочных -правым способом. ≥α

Рис6-газовая сварка.jpg

Рис. 5 Движения горелки и проволоки: а - при сварке стали толщиной более 3 мм в нижнем положении;б - при сварке угловых валиковых швов; 1 - движение проволоки;   2 - движение горелки; 3 - места задержек движения

При необходимости использования флюса он наносится на свари­ваемые кромки или вносится в сварочную ванну оплавляемым концом присадочного прутка (налипающим на него при погружении во флюс). Флюсы могут использоваться и в газообразном виде при подаче их в зону сварки с горючим газом.

Список литературы

1. Лосев В.А., Юхин Н.А. Иллюстрированное пособие сварщика. М.: Изд-во «Соуэло», 2000. 60 с.


Заказать услугу
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Товары